
Web-based Cryptojacking in the Wild

Marius Musch, Christian Wressnegger,
Martin Johns, and Konrad Rieck

Computer Science Report
Technische Universität Braunschweig
Institute for Application Security

ar
X

iv
:1

80
8.

09
47

4v
1 

 [
cs

.C
R

] 
 2

8 
A

ug
 2

01
8



2

Technische Universität Braunschweig
Institute for Application Security
Mühlenpfordtstraße 23
38106 Braunschweig, Germany



Abstract
With the introduction of memory-bound cryptocurrencies, such as Monero, the im-
plementation of mining code in browser-based JavaScript has become a worthwhile
alternative to dedicated mining rigs. Based on this technology, a new form of parasitic
computing, widely called cryptojacking or drive-by mining, has gained momentum in
the web. A cryptojacking site abuses the computing resources of its visitors to covertly
mine for cryptocurrencies. In this paper, we systematically explore this phenomenon.
For this, we propose a 3-phase analysis approach, which enables us to identify mining
scripts and conduct a large-scale study on the prevalence of cryptojacking in the
Alexa 1 million websites. We find that cryptojacking is common, with currently 1 out
of 500 sites hosting a mining script. Moreover, we perform several secondary analyses
to gain insight into the cryptojacking landscape, including a measurement of code
characteristics, an estimate of expected mining revenue, and an evaluation of current
blacklist-based countermeasures.



1 Introduction
Cryptocurrencies, such as Bitcoin and Ether, have gained popularity in the last years, as they
provide an alternative to centrally controlled fiat money and a profitable playground for financial
speculation. A basic building block of these currencies is the process of mining, in which a group
of users solves computational puzzles to validate transactions and generate new coins of the
currency [see 27]. Although the stability and long-term perspectives of cryptocurrencies are not
fully understood, they have attracted large user communities that mine and trade coins in different
markets with considerable volume. For example, Bitcoin reached an all-time high of 19,300 USD
per coin in December 2017 [8], resulting in a market value comparable to major companies.
The mining of cryptocurrencies has been largely dominated by dedicated hardware systems,

such as GPU and ASIC mining rigs. This situation, however, has started to change with the
introduction of memory-bound cryptocurrencies, like Monero, Bytecoin, and Electroneum. These
currencies build on computational puzzles that are memory intensive and thereby reduce the
advantage of specific hardware over commodity processors [see 34, 38]. Consequently, the resulting
currencies can be profitably mined on regular computer systems and thus open the door for the
widespread application of cryptocurrency mining.

Unfortunately, this development has also attracted miscreants who have discovered cryptocur-
rencies as a new means for generating profit. By tricking users into unnoticeably running a miner
on their computers, they can utilize the available resources for generating revenue—a strategy
denoted as cryptojacking or drive-by mining [22]. A novel realization of this strategy is injecting
mining code into a website, such that the browser of the victim mines during the website’s
visit. First variants of these attacks have emerged with the availability of the CoinHive miner in
September 2017 [1, 23]. This software cleverly combines recent web technologies to implement a
miner that efficiently operates on all major browsers. Although originally developed for benign
purposes, CoinHive has been maliciously injected into several websites over the last months [e.g.,
10, 16]. Recently, a vulnerability in MikroTik routers has been used to inject a cryptojacking
script into traffic passing through more than 200,000 of these routers [4].
In this paper, we present a large-scale study on web-based cryptojacking. While previous

work has anecdotally described this phenomenon [12] and discussed detection approaches [22], we
systematically investigate the prevalence of mining scripts in the Alexa Top 1 million websites. To
this end, we have instrumented a browser to monitor the execution of code during the visit of a
website and spot indications of mining activity, such as an unusual CPU utilization, the excessive
repetition of functions and the presence of suspicious scripts. Moreover, we have traced back



2 Web-based Mining 5

mining activity to individual wallets and API keys, which allows us to make estimates about the
revenue of particular cryptojackers. In summary, our study provides the following key insights:

(a) Web-based cryptojacking is not rare. We observe that 1 out of 500 websites in the
Alexa ranking contains a web-based miner that immediately starts once the website is visited.
These miners target different cryptocurrencies, including Monero, Bytecoin, and Electroneum.
While the JavaScript code driving the mining is diverse and often obfuscated, we observe that
almost all miners employ similar WebAssembly code from the CoinHive project. We credit this
finding to the CryptoNote protocol [38] that is implemented by the CoinHive miner and can
support different currencies with minor modifications.

(b) Mining profits are moderate. Our analysis further provides a glimpse at the ecosystem
of current cryptojacking. Several attackers operate on different websites using the same wallet
or API key. In some cases, a single website mines multiple currencies in parallel, likely due to a
coincident infection with malicious code. Based on the configuration of typical desktop computers
and statistics about website visits, we estimate the revenue generated by individual miners in the
Alexa ranking at a range of a few cents up to 340USD per day under the current price of the
respective cryptocurrencies.

(c) Existing defenses are insufficient. We investigate the effectivity of current defenses
against cryptojacking, such as blacklists and browser extensions. While these defenses provide
sufficient protection from known mining sites, such as CoinHive and CryptoLoot, the underlying
static detection patterns are ineffective against customized variants of the mining code. We
thus argue that better protection from web-based mining is needed and, in addition to static
matching, also run-time analysis needs to be considered to reliably track down mining activity.
MineSweeper [22], for instance, is a promising alternative that provides detection based on charac-
teristics of cryptomining code.

The remainder of the paper is organized as follows: We first review the background of memory-
bound cryptocurrencies and web-based mining in Section 2. We then present our empirical study
on cryptojacking, where the prevalence of web-based miners is discussed in Section 3 and their
characteristics are analyzed in Section 4. In Section 5 we provide case studies on the two largest
families of miners and discuss limitations of the study in Section 6. Finally, related work is
presented in 7 and Section 8 concludes the paper.

2 Web-based Mining
Cryptocurrencies are a specific type of electronic money that provide decentralized control using
the concept of blockchains [27]. In contrast to other electronic currencies, individuals generate
revenue by solving computational puzzles and thereby validating transactions—a process referred
to as mining. While mining of classic cryptocurrencies requires specific hardware to be profitable,
memory-bound currencies and novel web standards have paved the way for effective mining in web
browsers. In the following, we review these changes and discuss their impact on cryptojacking.



2.1 Memory-bound Cryptocurrencies 6

2.1 Memory-bound Cryptocurrencies
Classic cryptocurrencies, such as Bitcoin and Ether, build on proof-of-work functions (compu-
tational puzzles) that are CPU-bound, that is, the effectivity of mining mainly depends on the
available computing power [5]. Hardware devices designed for demanding computations, such
as GPUs and ASICs, thus provide a better mining performance than common CPUs. As a
consequence, profitable mining of classic cryptocurrencies has become largely infeasible with
regular desktop and mobile computer systems.

Memory-bound functions. This situation has not been anticipated in the original design of the
first cryptocurrencies and violates the “one-CPU-one-vote” principle underlying Bitcoin mining
[27]. As a remedy, alternative cryptocurrencies have been developed in the community that
make use of memory-bound functions for constructing computational puzzles. One prominent
example is the cryptographic mixing protocol CryptoNote [38] and the corresponding proof-of-work
function CryptoNight [34]. CrypoNight is a hash function that determines the hash value for
an input object by extensively reading and writing elements from a 2Megabyte memory region.
This intensive memory access bounds the run-time of the function and moves the overall mining
performance from the computing resources to the available memory access performance. As
memory access is comparably fast on common CPUs due to multi-level caching, CryptoNight and
other memory-bound proof-of-work functions provide the basis for alternative cryptocurrencies
that can be efficiently mined on regular desktop systems and hence are a prerequisite for realizing
web-based miners.

CryptoNote-based currencies. The idea of memory-bound proof-of-work functions along with other
improvements over the original Bitcoin protocol has spawned a series of novel cryptocurrencies, each
forking the concept of CryptoNote. Prominent examples are Monero [XMR, 36], Bytecoin [BCN, 6],
and Electroneum [ETN, 11], which reach a market capitalization between 226 million and 3.8 bil-
lion USD [8]. These currencies share the underlying CryptoNote protocol and thus can be easily
implemented with same code base. Moreover, due to the concept of anonymous transactions they
provide more privacy than Bitcoin and may conceal the identity of senders and receivers [see 24, 25].

Both properties—profitable mining on desktop systems and the availability of different currencies
following the same cryptographic protocol—render these currencies an ideal target for web-based
mining. Furthermore, the increased privacy of transactions provides a basis for conducting
cryptojacking over manipulated web sites. According to our findings, CryptoNote-based currencies
are currently prevalent in web-based mining and play a major role in cryptojacking as detailed in
Section 4.

2.2 Novel Web Standards
The decentralized nature of cryptocurrencies imposes constraints on the capabilities of mining
clients. First, the clients need to efficiently communicate with each other to synchronize the
solving of puzzles. Second, the clients require programming primitives that enable an optimal
utilization of available hardware resources.



2.2 Novel Web Standards 7

At a first glance, these requirements seem to contradict with classic web technology, as the
underlying HTTP protocol induces a non-trivial overhead and supported scripting languages, such
as JavaScript and ActionScript, do not provide efficient primitives for low-level programming.
However, browser vendors and the W3C have continuously advanced web standards and developed
additional functionalities. In combination, WebSockets, WebWorkers and WebAssembly provide a
fruitful ground for web-based mining of cryptocurrencies.

WebSockets. The WebSocket protocol has been standardized as additional browser functionality
in 2011 [14] and is supported by all major browsers as of now. The protocol enables full-duplex
communication from the browser to a web server with less overhead than HTTP. From the network
perspective, the protocol is a classic application-layer protocol that operates on top of the transport
layer. From the web application’s point of view, however, WebSockets rather provide a transport
protocol that enables transferring arbitrary payloads.
In the context of web-based mining, WebSockets allow the efficient communication between

miners through a web server and thus are an integral part of currently available implementations
(see Section 2.3). However, WebSockets are also used in several other types of web applications,
like chats and multiplayer games, and thus represent only a weak indicator of mining activity.

WebWorkers. A second addition are so-called WebWorkers which have been introduced in 2015 [18]
and are also supported by all major browsers. This programming primitive enables JavaScript
code to schedule multiple threads and conduct concurrent computations in the background. While
the original programming model underlying JavaScript already supports event-driven concurrency,
orchestrating the available computing resources, such as multiple cores, has been technically
involved. This problem is alleviated with WebWorkers, where the number of concurrent threads
can be scaled with the available processor cores easily.

Although WebWorkers are not strictly necessary for implementing web-based mining, they allow
for better utilizing the available resources and thus can also be found in most implementations.
For our study, we hence consider the presence multiple of WebWorker threads as an indicator for
potential mining activity.

WebAssembly. The previous two functionalities ease the communication and scheduling of web-
based miners. Yet they are not sufficient for realizing an efficient implementation, as the underlying
JavaScript code requires a costly interpretation within the browser. This problem is addressed
by the WebAssembly standard from 2017 [31]. The standard proposes a low-level bytecode
language that is a portable target for compilation of high-level languages, such as C/C++ and
Rust. WebAssembly code, or Wasm code for short, is executed on a stack-based virtual machine
in the browser and improves the execution as well as loading time over JavaScript code [17].
WebAssembly is currently supported by Chrome, Safari, Firefox and Edge1.

WebAssembly is a perfect match for implementing mining software, as it enables compiling
cryptographic primitives, such as specific hash functions, from a high-level programming language
to low-level code for a browser. As an example, Figure 1(a) shows a simplified snippet of C code
from the cryptographic hash Skein [13]. The corresponding WebAssembly code is presented in

1Statistics from https://caniuse.com/#feat=wasm, May 2018

https://caniuse.com/#feat=wasm


2.3 Anatomy of a Web-based Miner 8

Figure 1(b) as raw bytes and instructions. Note that the instructions do not contain any registers,
due to the stack-based design of the virtual machine. The characteristic constant of the Skein hash,
which here is encoded in LEB128 format—a variable-length representation of integer numbers [see
37]—is visible in line 5.

1 int64_t k18 = k16 ^ k17 ^ 0x1bd11bdaa9fc1a22;

(a) Simplified C code snippet from the Skein hash.

1 00: 20 10 ; get_local 16
2 02: 20 11 ; get_local 17
3 04: 85 ; i64.xor
4 05: 42 ; i64.const
5 06: a2 b4 f0 cf aa fb c6 e8 1b ; i64 literal
6 0e: 85 ; i64.xor
7 0f: 21 12 ; set_local 18

(b) Corresponding WebAssembly code as raw bytes and instructions.

Figure 1: Example of C and WebAssembly code.

2.3 Anatomy of a Web-based Miner
CoinHive is the first implementation of mining software based on the aforementioned developments.
The software has been officially released in September 2017 and has originally been developed for
a popular image board as an alternative payment mechanism [23]. Several variants that, similar
to CoinHive, all implement the CryptoNote protocol have been developed ever since, including
JSECoin and CryptoLoot. Although these implementations differ in some details, they share
how WebSockets, WebWorkers and WebAssembly are used for efficient web-based mining. In the
following, we describe the anatomy of such miners and how these technologies interconnect.

The miner itself is distributed via a single JavaScript file, which the website’s owner includes on
the page along with a small snippet to configure and start the mining process. The snippet and
its configuration may be further customized, e.g., to not execute on mobile devices, but at least
requires a unique id that maps miners to identities—in the case of CoinHive, so-called site-keys—in
order to account payouts for calculated hashes. Due to this additional indirection it usually is
not possible to link miners, identified by site-keys, to specific wallet addresses. Moreover, each
account may be associated with multiple site-keys, such that multiple mining sites may in fact
mine for the same wallet without disclosing the fact to the public.

On startup, the miner instantiates the desired number of WebWorkers and creates a WebSocket
connection to the mining pool, where it registers itself with the supplied site-key. In return the
miner receives a job represented by a blob and a target: The blob is similar to CryptoNote’s block
identifier and contains the current block header, the hash of the Merkle tree root that allows



2.4 Cryptojacking 9

to securely link the mined block to the previous block on the chain, as well as the number of
transactions included in the block [40]. The target, on the other hand, is a value chosen by the
pool and determines whether a found hash is reported. Since the pool rewards calculated hashes
rather than mined blocks, it needs to reliably track the miner’s contribution. A target value of
ffffff00, for instance, means that every hash with two trailing zeros should be sent to the pool
(hashes are represented in little-endian format), alongside with a nonce used to create that hash.
In this example, the probability of finding a nonce which results in such a hash is 1

256 , such that
the pool credits 256 hashes to the owner of the site-key. This way, only a fraction of the calculated
hashes needs to be transferred and validated. Simultaneously, this prevents the pool’s participants
from cheating the system. A simplified example of this communication is shown in Figure 2.

1 => auth: {version:7, site_key:"yQu...cOz"}
2 <= authed: {token:"", hashes:0}
3 <= job: {blob:"070...103", target:"ffffff00"}
4 => submit: {nonce:"99bd1d53", result:"ee9...c00"}
5 <= hash_accepted: {hashes:256}
6 => submit: {nonce:"f40ef4ed", result:"4a3...900"}
7 <= hash_accepted: {hashes:512}

Figure 2: WebSocket communcation, simplified for brevity. An arrow to the right indicates messages sent
from the browser to the mining pool.

The calculation of the CryptoNight hashes at the core of the whole mining process is implemented
in WebAssembly to increase performance. The corresponding code is usually included in the
JavaScript code of the miner as a binary blob and instantiated by each worker. If throttling is
configured to use less than 100% of the CPU for mining, the workers constantly monitor the time
consumed for each calculated hash and adjust the delay between hash calculations. This, however,
only allows for a rough approximation of the desired load on the system.

2.4 Cryptojacking
Web-based mining certainly has legit use-cases and may pose an alternative to online advertisements
as scheme of monetization. Moreover, mining might even replace CAPTCHAs used for rate
limitation by requiring a proof-of-work. The anonymity offered by cryptocurrencies in combination
with simple deployment on the web, unfortunately, also attracts actors with less noble goals. As
the effort and cost of including a miner in an existing website is negligible, all it needs is access to
a frequently visited website. Recently, a variety of incidents involving mining scripts have been
reported for popular websites [33, 41].
We define cryptojacking as the practice of automatically starting a web-based miner upon

visiting a web page. For this, we neither consider the disclosure of the mining process to the
user nor the presence of an opt-out mechanism relevant. We view a consent after the fact as an
inadmissible mode of operation, similarly to how the GDPR now requires a “clear affirmative



3 Identification of Web-based Miners 10

action” for tracking cookies in the EU [9]. Miners that only run after explicit consent by the user,
such as as Authedmine and JSEcoin, are not considered part of the problem and are thus not
examined in our study. To conclude that a website employs cryptojacking, we further do not
differentiate between scripts added by the website’s owner and scripts injected by a third party by
means of hacking the server or hijacking included scripts.

3 Identification of Web-based Miners
Based on the discussed background, we proceed to present our systematic study of cryptojacking
on the web. The goal of this study is to evaluate to which degree the recent level of hype is justified
through painting a comprehensive picture of the current cryptojacking practices in the wild. To
this end, we measure the prevalence of cryptojacking in today’s web (Section 3.4) and examine the
effectiveness of the current generation of dedicated anti-cryptojacking countermeasures (Section 3.5).
Finally, we explore what evidence can be drawn from sites that host cryptojacking scripts
(Section 3.6). After introducing our approach and documenting our experiments, we address these
topics in detail.

3.1 General Approach

Alexa 1 million
websites

Active
miners

Generalized 
miners

Miner 
candidates

Phase 1: 
Detection of candidates

Phase 2: 
Validation of miners

Phase 3: 
Generalization of miners

Dynamic analysis for 5 seconds.
Detection of suspicious functions.

Dynamic analysis for 30 seconds.
Detailed measuring of CPU load

Static analysis of mining code.
Generalization of files and links.

Active
miners

Generalized 
miners

Miner 
candidates

Alexa 1 million
websites

Figure 3: Overview of our approach for identification of web-based miners.

For conducting our study, an empirical method is required that is accurate in its detection
capabilities while being scalable to enable the analysis of large numbers of real-world websites. To
accommodate these requirements, we designed a dedicated cryptojacking detection process that
spans three individual phases: 1) An over-permissive first broad sweep to identify potential miner
candidates using heuristics, 2) a thorough run-time analysis to isolate the real miners within the
candidate set, and 3) a generalization step, in which we extract static indicators, that allow the
identification of non-active or stealth mining scripts (see Figure 3).

Phase 1: Detection of candidate sites.
In the first phase, our approach conducts a fast and imprecise initial analysis of websites to

create a pool of candidates which likely—but not necessarily—host a mining script. To do so, we
compiled a set of heuristics that hint the potential presence of a cryptojacking script and that can
be measured at run-time while rendering a webpage in a browser. These heuristics were extracted
from a manual analysis of verified mining scripts. For one, we initiate a short profiling of the



3.2 Implementation 11

site’s CPU usage, with unusual high CPU utilization levels being interpreted as an indicator for
mining. Furthermore, we mark all sites as suspicious, that use miner-typical web technologies,
which are not in wide-spread use in the general web, namely WebAssembly or non-trivial amounts
of WebWorkers. If at least one of these indicators could be found in a site, this site is marked as a
potential mining candidate. Thus, the result of this phase is an over-approximation of the set of
actual mining sites.

Phase 2: Validation of mining scripts.
For obvious reasons, none of the used heuristics is conclusive in the identification of miners, as

there is a multitude of legitimate reasons to use WebWorkers, WebAssembly or temporary high
amounts of computation. However, the constant and potentially unlimited usage of CPU, caused
by a single function within parallelized scripts is a unique phenomenon of cryptojacking. Thus, in
the second phase we conduct a significantly prolonged run-time analysis of the candidate sites, in
which the sites receive no external interaction and hence should be idle after the initial rendering
and set-up in legitimate cases. However, if once the page is loaded, all JavaScript is initialized,
and the DOM is rendered, the CPU usage still remains on a high level and the computation load is
the result of repetitive execution of a single function within the webpage’s code base, we conclude
that the site hosts an active cryptojacking script.

Phase 3: Generalization of miner characteristics.
The run-time measurements of the first two phases limit our approach to the detection of active

mining scripts. We thus might miss mining sites that are inactive at the time of the test, for
instance due to programming errors in the site’s JavaScript code, a delayed start of the mining
operation, or mining scripts waiting for external events (e.g., initial user interaction with the
page). To create a comprehensive overview, it is important to identify these sites to document the
intent of mining. To this end, we leverage the results of the second phase to generate a set of
static features of mining scripts which we can be used to reevaluate the data from phase 1.
To this end, we first extract the JavaScript code from the validated mining sites that is

responsible for initiating and conducting the mining operations. From this script code, we take
both the URL and a hash of its contents as two separate features. Furthermore, we collect all
parsed WebAssembly functions, sort them and use the hash of the whole code base as the third
feature. We then apply each feature to our list of confirmed miners from the previous phase and
keep only those that describe at least a certain number of miners. As the result, we obtain a
set of generalized fingerprints, which can identify common mining scripts even in their inactive
state. Applying these onto the data collected during the first phase in combination with our list
of confirmed miners from the second phase yields to total number sites with a web-based miner.

3.2 Implementation
We implemented the previously outlined approach into our custom web crawler. In the following,
we cover some details of the implementation, which enable us to obtain accurate results on a large
scale in a real-world environment.



3.2 Implementation 12

3.2.1 Instrumented browser

We use a normal browser to visit all websites, in this case Google Chrome. This ensures that we
will execute all scripts and support all modern features needed to run a miner in the browser (see
Section 2.2). By starting Chrome in headless mode, we can run many instances simultaneously
without the overhead of a GUI. Our crawler is written in NodeJS and controls each instance via
the DevTools Protocol [7], which allows us to instrument the browser and extract all necessary
data. Amongst others, the protocol supports retrieving all network traffic including WebSocket
communication as well as obtaining all parsed JavaScript and Wasm code by providing events like
Debugger.scriptParsed and Network.webSocketFrameReceived. As each worker runs in a separate
execution environment called Target, we need to automatically attach to all targets related to the
currently visited main page in order to hook their events, too.

3.2.2 Fake number of cores

The number of logical cores of a visitor’s CPU is exposed in JavaScript via the hardwareConcurrency

property of the global navigator object. This allows scripts to adjust the number of concurrent
WebWorkers according to the available hardware and is used by miners to start the desired number
of threads (usually one per core). However, we do not want a single mining site to seize all available
resources on our server and interfere with simultaneous visits of other websites. Furthermore,
websites might employ checks on the number of cores and not run if an unusually high number is
observed, thus preventing us from detecting them. Changing the returned value can be achieved
by overwriting the property as shown in Figure 4, without patching internals of the browser. By
using the DevTools Protocol’s addScriptToEvaluateOnNewDocument method, this script is injected
into every page before any other JavaScript execution starts and pretends that we only have 4
logical cores, mimicking common desktop systems.

1 Object.defineProperty(navigator,
2 ’hardwareConcurrency’, {
3 enumerable: true,
4 get: function() {
5 return 4;
6 }
7 }
8 )

Figure 4: Overwriting the native function to always return 4 instead of the actual number of cores.

3.2.3 CPU Profiling

Most importantly, instead of using standard Unix tools to measure the CPU load on a per-process
level, we utilize the integered profiler of Chrome’s underlying JavaScript engine V8 to measure



3.3 Experimental Setup 13

the load on a per-function level. We start this profiler, which is exposed by the DevTools Protocol
via the Tracing domain, with the v8.cpu_profiler.hires option for more accurate results. The
profiler pauses the execution at a regular interval and samples the call stack, which enables us
to estimate the time spent in each executed function. This way, we can not only determine if a
single function consumes a considerable amount of CPU time, but also pinpoint the responsible
script in the website’s code.

In order to achieve this, we aggregate the collected data for each unique call stack. Wasm code
itself cannot be profiled on a function level, so all samples of it are just named <WASM UNNAMED>.
However, from the call stack we can still see how much time the Wasm code took and trace it
back to the JavaScript function which caused the call into Wasm in the first place (see Table 1).
By comparing the time spent in a function with the length of the profiling, we can estimate the
caused CPU load for that particular function. Note that if the same code is running in several
workers simultaneously, the combined time from all workers can be as high as the number of cores
times the length of the profiling, e.g., our profiling for 5,000 milliseconds with 4 CPU cores in
phase 1 can result in a maximum time of 20,000. Thus, taking the value of 14,375 from Table 1
as an example, would mean this function generated a load of approximately 72%.

Function name # Samples Time in ms

<WASM UNNAMED> 73,938 14,375.3
Module._akki_hash 1 0.1
CryptonightWASMWrapper.hash 4 0.6
CryptonightWASMWrapper.workThrottled 11 1.8
(root) 0 0.0

Table 1: Example of a call stack with the aggregated amount of samples and time spent for each of its
functions.

3.3 Experimental Setup
We used the aforementioned implementation to find instances of web-based cryptojacking in the
wild. The following paragraphs briefly discuss the key parameters of our experimental setup for
each of the three phases.

Phase 1. We conducted our study on the Alexa list of the top 1 million most popular sites2. We
visit the front page of each site and wait until the browser fires the load event or a maximum of
30 seconds pass. Furthermore, to allow for sites that dynamically load further content, we wait
an additional 3 seconds or until no more network requests are pending. We then start the CPU
profiler and measure all code execution for 5 seconds and flag the site as suspicious, if there is a
function with more than 5% load on average. As the most CPU-heavy function on each website
of the Alexa Top 1 million had an average load of only 0.2 % ± 3.21, we reckon that a value of 5%
or more warrants further investigation. We also flag the site for extendend analysis, if either any

2http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip


3.4 Prevalence 14

Wasm code or more than 3 workers are used, which is equal or more than all the CPU cores we
pretend to have. For this phase, we used a single server with 24 CPU cores and 32 GB of RAM
running 24 simultaneous crawlers backed by Chrome v67.0.3396 over a time span of 4 days.

Phase 2. The detailed verification of suspicious sites uses the same general setup as the first
phase. However, here we only run one crawler on a smaller server with 8 CPU cores. By visiting
the websites one-by-one and profiling for a longer time of 30 seconds, we can more accurately
determine if a website contains a mining script. If there is one function in the code base that
results in an average load of 10% or more, we label it as a confirmed and active miner. We argue
that while a value lower than 10% certainly would make the miner very hard to detect, it also
severly thwarts the ability to make money with cryptojacking. Furthermore, such slow mining
does not even seem to be supported by popular mining scripts, as we will describe shortly.

Phase 3. In the final step, we create the fingerprints as outlined in Section 3.1 using the code of
the confirmed miners. However, we only keep the fingerprints shared by at least 1% of all miners.
This restrictive measure ensures that only mining scripts with multiple validated instances produce
fingerprints and, thus, avoids accidental inflation of potential phase 2 classification mistakes. The
resulting fingerprints are then applied to the collected data from the first phase, yielding the final
number of websites employing cryptojacking on their visitors.
To validate that our implementation and setup are working as intended, we created a testbed

with the two popular implementations that start without the user’s consent: CoinHive and
CryptoLoot. This testbed consists of 24 locally hosted pages, which each contain one of the miners
at a different throttling levels between 0% and 99%. Interestingly, even if the miner is configured
with a throttle as high as 99%, so that it should utilize only 1% CPU, we can confirm it as a miner
with our 10% threshold. Looking into the implementation of the throttling, we find that the code
never sleeps for longer than two seconds between hash calculations, which makes it impossible to
actually use very low throttling values. We also confirm this by monitoring Chrome’s CPU usage
with htop and find that no matter how high we set the throttling, the load on our machine never
drops to below 20%. As our implementation is able to successfully detect all miners in the testbed,
regardless of the used throttling value, we are confident its ability to find active cryptojacking
scripts.

3.4 Prevalence
As first result of our crawling, we identify 4,627 suspicious sites in the Alexa ranking using the
methodology and parameters outlined in the previous sections. Out of these, 3,028 are flagged
for having a load-intensive function, 3,561 for using at least as many workers as CPU cores we
pretend to have and 2,477 for using Wasm. Note that these sets overlap, as for example the usage
of Wasm often implies a CPU intensive application.
The detailed analysis of these 4,627 suspicious sites results in 1,939 sites with a continuously

high CPU usage over a profiling for 30 seconds. We use the resulting set of scripts for the third
phase to build fingerprints of the most popular miners, resulting in 15 hashes of JavaScript code,
12 hashes of Wasm code bases, and 8 script URLs. The latter can be found in Table 3. After



3.5 Effectiveness of Countermeasures 15

applying these fingerprints, we obtain the final number of 2,506 websites, which are very likely to
employ cryptojacking. Table 2 summarizes our results.

Phase Result # Websites % of Alexa

1 Suspicious sites 4,627 0.46
2 Active cryptojacking sites 1,939 0.19
3 Total cryptojacking sites 2,506 0.25

Table 2: Prevalence of web-based miners in the Alexa Top 1 million websites.

URL # Occurrences

//coinhive.com/lib/coinhive.min.js 656
//advisorstat.space/js/algorithms/advisor.wasm.js 311
//www.weather.gr/scripts/ayh9.js 68
//aster18cdn.nl/bootstrap.min.js 59
//cryptaloot.pro/lib/crypta.js 46
//gninimorenom.fi/sytytystulppa.js 35
//coinpot.co/js/mine 27
//mepirtedic.com/amo.js 22

Table 3: Common script URLs responsible for the creation of the mining workers, which resulted in
fingerprints

During manual investigation of a sample of the additional 567 sites only detected in phase 3,
we found five reasons why our dynamic analysis missed these miners: (1) A script for web-based
mining is included, but the miner is never started. (2) The miner only starts once the user interacts
with the web page or after a certain delay. (3) The miner is broken—either because of invalid
modifications or because the remote API has changed (as it was the case for CoinHive earlier this
year). (4) The WebSocket backend is not responding, which prevents the miner from running.
(5) The miner is only present during some visits, e.g., to hinder detection or due to ad banner
rotation

This analysis confirms the need for a three-step identification process, as only the combination
of phase 2 and 3 enable us to determine a comprehensive picture of current cryptojacking in the
websites of the Alexa ranking.

3.5 Effectiveness of Countermeasures
To both compare our findings to existing approaches for the detection of cryptojacking and to
validate our results, we select three popular solutions to block miners in the browser. For one, we
use the NoCoin adblock list3, which is a generic list for adblockers, such as Adblock Plus or uBlock
Origin and is now also used by Opera’s built in adblocker. For the remainder of this section, we
refer to this list as Adblocker. Furthermore, we include the blacklists used by the two most popular

3https://github.com/hoshsadiq/adblock-nocoin-list/

 //coinhive.com/lib/coinhive.min.js 
 //advisorstat.space/js/algorithms/advisor.wasm.js 
 //www.weather.gr/scripts/ayh9.js 
 //aster18cdn.nl/bootstrap.min.js 
 //cryptaloot.pro/lib/crypta.js 
 //gninimorenom.fi/sytytystulppa.js 
 //coinpot.co/js/mine 
 //mepirtedic.com/amo.js 
https://github.com/hoshsadiq/adblock-nocoin-list/


3.5 Effectiveness of Countermeasures 16

Chrome extensions with the purpose of blocking web-based miners: No Coin4 with 566,692 users
and MinerBlock5 with 161,630 users. We extract the detection rules these extensions contain and
translate them into SQL statements while preserving the wildcards, in order to apply them to
the data collected during our crawl of the Alexa Top 1 million sites. The number of identified
miners for each system are presented in Table 4 in the first column. The other columns of this
table compare these results for each system with the 2,506 websites we identified as miners. The
second column reports on the intersection of both lists, that is the number of sites on which both
approaches are in agreement. Accordingly, the last two columns each contain the number of sites
that one approach reported, but not the other.

Blacklist # Detections # Both # Only they # Only we

Minerblock 1,599 1,402 197 1,104
No Coin 1,217 1,039 178 1,467
Adblocker 1,136 1,049 87 1,457

Table 4: Detection results of our approach and three common blacklists as absolute numbers.

Unsurpisingly, our approach mixing static and dynamic analysis clearly outperforms the three
static blacklists and spots a considerable amount of additional web-based miners. Moreover, the
large overlap in sites that both we and the extensions found, validates that our approach and
shows that it is indeed suitable to detect cryptojacking in the wild.
There are, however, a few sites that our approach misses, but the blacklists detect. Manual

analysis of a subset showed that besides overly zealous lists, the main reason is that we can only
learn fingerprints of active miners. For example, some website owners copied CoinHive’s script
to host it on their own servers a few months ago. Meanwhile, all these mining scripts stopped
working, as CoinHive changed its API used in the communication with the pool. Therefore,
while this probably represents a cluster of inactive miners, we are unable to detect them, as no
fingerprint for any of the scripts could be generated in the third phase, due to the fact that the
whole cluster was inactive at the time of analysis.

The existing blacklists on the other hand can detect them, as their rules are curated by humans,
which allows them to apply a couple of generic measures. For example, most blacklists include a
rule for */coinhive.min.js. In contrast, our static indicators are generated in a fully automated
fashion, based on code characteristics from dynamically validated miner instances. In this process,
we cannot generalize our list of fingerprinted full script URLs towards partial URLs or even only
filenames without manual review, as this could lead to misclassifications. For instance, in our
dataset such an attempt would end up in all scripts named */bootstrap.min.js being blacklisted
because a widespread mining script uses this benign-sounding name (see Table 3).

4https://chrome.google.com/webstore/detail/gojamcfopckidlocpkbelmpjcgmbgjcl
5https://chrome.google.com/webstore/detail/emikbbbebcdfohonlaifafnoanocnebl

https://chrome.google.com/webstore/detail/gojamcfopckidlocpkbelmpjcgmbgjcl
https://chrome.google.com/webstore/detail/emikbbbebcdfohonlaifafnoanocnebl


3.6 Distribution 17

3.6 Distribution
Next, we investigate what evidence can be drawn on sites that host cryptojacking scripts and if
their usage is dominant on certain parts of the Internet or if their prevalence is more uniformly
distributed. First of all, we check if there is a connection between the popularity of a website and
its likelihood to use cryptojacking. For this, we use the rank provided by Alexa and included in
our initial selection of the top 1 millions sites. A low number indicates a highly popular site, e.g.,
google.com has the rank 1. While there is a slight trend towards the lower ranks, cryptojacking is
indeed a wide-spread phenomenon not limited to popular websites (see Figure 5).

100K 300K 500K 700K 900K
Alexa rank

0

50

100

150

200

250

# 
Cr

yp
to

ja
ck

in
g 

sit
es

Figure 5: Distribution of cryptojacking by popularity using the Alexa ranking.

Furthermore, we want to know where cryptojacking sites operate and therefore examine the
location of the hosting servers, by resolving the website’s IP address with our local DNS server
and using a free geolocation database6. We find that the majority of cryptojacking sites are hosted
in the United States, followed by Russia and Germany (see Table 5).

Hosting country # Sites Hosting country # Sites

United States 1,118 France 124
Russia 508 Netherlands 111
Germany 203 Others 442

Table 5: Five most common countries which host cryptojacking miners in websites of the Alexa ranking.

Finally, we check what content these sites provide in order to attract visitors. For this, we use
data from Symantec’s WebPulse Site Review7. Table 6 lists the most popular categories and shows
that websites offering entertainment in general or pornography in particular are most common,
with the topics technology and business in the follow-up. Furthermore, 584 sites are labeled as
suspicious and another 541 are labeled as malicious by Symantec.

6https://dev.maxmind.com/geoip/geoip2/geolite2/
7http://sitereview.bluecoat.com/lookup

https://dev.maxmind.com/geoip/geoip2/geolite2/
http://sitereview.bluecoat.com/lookup


4 Analysis of cryptojacking 18

Category # Sites

Entertainment 237
Malicious Sources/Malnets 231
Pornography 184
Technology/Internet 138
Business/Economy 103
Education 99
Piracy/Copyright Concerns 96
News/Media 95
Games 80
TV/Video Streams 63

Table 6: Ten most common categories for websites with cryptojacking. One website can have multiple
categories.

4 Analysis of cryptojacking
After identifying web-based miners in the Alexa ranking, we proceed to analyze the efficacy of
these miners in detail. For this analysis, we focus on all active miners discovered in phase 2 of
our study, that is, websites that immediately begin mining when visited by a browser. We start
by estimating the profit of these 1,939 mining websites and answer the question of whether such
mining can generate significant income (Section 4.1). We then investigate how aggressively these
web pages stress the visitors’ CPUs to shed light on the stealthiness of current cryptojacking in
the web (Section 4.2). Finally, we determine how many different implementations of miners exist
in our dataset and whether these differ due to customization and obfuscation (Section 4.3).

4.1 Revenue Estimation
Determining the exact revenue of web-based miners is a non-trivial task, as the profit depends on
several factors, such as the popularity of a website, its content, the visitor’s hardware as well as
the current price of the cryptocurrency. Consequently, we estimate the revenue at different levels
of granularity. First, we determine a rough upper bound by calculating the potential revenue
obtained when mining on a very large video-streaming website. Then, we dissect the code of the
active miners in our study and extract CoinHive site-keys and wallet addresses that enable us to
identify the cryptocurrencies and estimate the profit obtained by individual miners.

4.1.1 Upper-bound estimate

Video streaming and multimedia websites naturally attract the attention of visitors for a longer
time than other content on the web. For a first estimate of the potential profit that a large website
may generate, we consider the Pornhub video-streaming platform for adult content, for which
detailed statistics about visits are published [28]. In 2017, for instance, the website attracted a
total of 81 million visitors per day. Each of these visitors spent roughly 10minutes (9minutes
59 seconds) on the website, which sums up to 13.5 million hours spent on Pornhub world-wide



4.1 Revenue Estimation 19

each day. This offers a huge opportunity for advertisement and web-based mining likewise.

CPU model Cache size Hashes/s

Product name and clock speed L2/L3 Core CPU

Intel R© Xeon R© E5-1650 v3 @ 3.50GHz 15MB 22.2 148.9
Intel R© CoreTM i7-7700K @ 4.20GHz 8MB 21.4 115.3
Intel R© CoreTM i7-6820HQ @ 2.70GHz 8MB 23.2 90.2
Intel R© CoreTM i7-5557U @ 3.10GHz 4MB 21.1 35.5
Apple A11 Bionic APL1W72 8MB 16.0 35.1
HiSilicon Kirin 620 @ 1.20GHz 2MB 2.0 11.6

Table 7: Performance of different CPUs with CoinHive.

The actual revenue, however, depends on the specific computational power of the visitors’
hardware and the implementation of the miner. For our analysis, we thus focus on the CoinHive
library and measure its run-time performance for different desktop and mobile CPUs. Results of
this experiment are shown in Table 7, where the performance is presented in hashes per second
for one core and the entire CPU. Due to the memory-bound proof-of-work function, the hash
rate varies only slightly between the different CPU models when executed on one core. The
only exception is the HiSilicon CPU whose cache is limited to 2MB and thus is not suitable for
computing the CrypoNight hash.
If we assume a rate of 80H/s for an average CPU, we arrive at a revenue of 223.1XMR per

day for the entire Pornhub platform, under CoinHive’s payout ratio8. That is, a miner could
potentially earn 50,208USD per day on Pornhub for the current exchange rate9 of 1XMR =
225USD.

4.1.2 Expected per-site revenue

We proceed to estimate the expected revenue for the active miners identified in Section 3. In
particular, we make use of the SimilarWeb service to quantify the number of visits as well as the
average duration for the websites hosting the miners. The results of this analysis are shown in
Table 8, where we include the 10 most profitable sites identified during our analysis. These sites
are able to generate between 0.53 and 1.51XMR per day, that is, 119 to 340USD. Given that
the revenue is achieved without the consent of the visitors and visual indications, this is still a
notable profit. However, we conclude that current cryptojacking is not as profitable as one might
expect and the overall revenue is moderate.

4.1.3 Average revenue

We continue to asses the average profit made by mining on the web. To this end, we inspect
the distribution of visits per day and the average duration of these in Figure 6. The websites

8CoinHive’s payout ratio at the time of writing: 0.00005749XMR per 1 million hashes.
9According to https://coinmarketcap.com/, at time of our measurement crawl in May 2018

https://coinmarketcap.com/


4.1 Revenue Estimation 20

Visitors Duration Core hours Revenue*

per day per visit per day XMR per day

cinecalidad.to 1.3M 4’10” 89K 1.5
mejortorrent.com 0.8M 4’30” 60K 1.1
kinokrad.co 1.3M 2’29” 54K 1.0
ianimes.co 0.2M 13’07” 39K 0.7
india.com 1.3M 1’27” 32K 0.6
ddmix.net 0.4M 5’06” 38K 0.6
seriesypelis24.com 0.4M 5’22” 35K 0.6
seriesblanco.com 0.4M 6’06” 36K 0.6
ekinomaniak.tv 0.2M 10’10” 33K 0.6
kickass.cd 0.3M 5’24” 30K 0.5

Table 8: Visiting statistics for the top-10 sites containing miners.
* Estimated based on CoinHive’s payout ratio8 and 80H/s.

101 102 103 104 105 106

Number of Visitors

0 10 20 30 40 50 60
Minutes

Figure 6: Distribution of visits to web pages identified to use web-based miners (top) and the duration per
visit (bottom).



4.1 Revenue Estimation 21

with the largest outreach in our dataset (cinecalidad.to) has 1.3 million visits. A different site
(ianimes.co) attracts less visitors, but engages them to stay 13 minutes on the web page. On
average these websites attract 24,721 visitors per day and keep them for roughly 3minutes on
average. Overall, we thus observe a range of 0.17 to 89,000 core hours, with a mean of 1,550 core
hours. With a hash rate of 80H/s and CoinHive’s payout ratio8, a miner earns about 5.8USD
per day and website on average, which supports our observation that web-based cryptojacking
currently provides only limited profit.
Next, we group websites that make use of the same site-key to calculate the overall revenue

of mining entities. Tracking these relations provides valuable insights on the landscape of
cryptojacking, as we can identify attackers that deploy miners on multiple websites. Note, that
this analysis is not limited to CoinHive, but applies to any variant using the original implementation.
We thus observe a large variety of unique site identifiers. A few instances make use of nondescript
values such as X or abc, though, which we filter out for this particular measurement. Figure 7
depicts the frequency of websites per site-key in bins of 5.

5 10 15 20 25 30 35 40 45 50 55
Web pages per site-key

100

101

102

Fr
eq

ue
nc

y

Figure 7: Distribution of websites per site-key.

Our analysis shows that site-keys are indeed reused across different websites. Few cryptojackers
even pool forces across up to 40 to 55 websites, while the majority of attackers appears to act
on their own or, more likely, utilize CoinHive’s function of aggregating multiple site-keys with
one account. Moreover, we observe that 23 web pages make use of at least two site-keys. These
websites thus connect clusters of miners.

4.1.4 Used cryptocurrencies

Several cryptocurrencies, such as Monero, Electroneum, and ByteCoin, rely on the CryptoNight
proof-of-work function and thus can be mined using the same implementation with only minor
modifications. Consequently, the community has started to repurpose the original code of CoinHive
to mine alternative currencies, but also to use alternative pools with less severe payout fees. Some
of these implementations require specifying the wallet address that is used to track the revenue in



4.1 Revenue Estimation 22

mining pools. As a side effect, this address can be observed within the WebSocket communication
of the miner. Figure 8 shows a captured message that is used to communicate with a proxy, where
the value of the login field represents the Monero wallet to mine for.

1 "identifier":"handshake",
2 "pool":"supportxmr.com",
3 "login":"4676xXzU5tXfx4tDdDS...WivxG9c1ih6V",
4 "password":"",
5 "userid":"",
6 "version":4

Figure 8: Mining communication over WebSockets.

Wallet addresses follow a very strict pattern and normally contain a checksum. In consequence,
these addresses can be easily identified and located in network traffic. A Monero wallet, for
instance, is a base58 encoded binary string, where the last four bytes are the Keccak hash (as
submitted to the SHA-3 contest, but not the FIPS 202 compliant implementation) of the preceding
bytes. While the wallet address encodes more information, necessary for conducting transactions,
this information is irrelevant for locating the address in network communication.

We use this strategy to identify wallet addresses in the traffic of the discovered active miners in
our dataset. Table 9 summarizes our findings. We identify a total of 36 different wallets, with a
large majority accounting for the cryptocurrency Monero, while for Electroneum and Bytecoin
we find only 3 and 2 addresses, respectively. Moreover, we spot two instances of lesser-known
currencies, Intense Coin and Graffiti Coin. These results reflect the popularity and market
capitalization of the individual currencies.

Additionally, we are able to identify 570 site-keys corresponding to the CoinHive service, which
at the time being also mines Monero coins. Due to CoinHive’s separation of site-keys and wallets,
the service, however, is not bound to a particular cryptocurrency and may change to or incorporate
other markets in the future. We thus consider CoinHive a service without specific currency.

XMR
ETN
BCN
ITNS
GRF

Crypto currency #

Monero (XMR) 28
Electroneum (ETN) 3
Bytecoin (BCN) 2
Intense Coin (ITNS) 2
Graffiti Coin (GRF) 1

CoinHive 570

Table 9: Cryptocurrency wallets used for mining.



4.2 Greediness vs. Stealthiness 23

4.1.5 Quantitative estimate

Finally, we determine the profit associated with the wallets identified in the previous section.
Unfortunately, tracking cash-flows for cryptocurrencies based on the CryptoNote protocol is only
possible in a few, rare scenarios and under very specific preconditions [see 24, 25]. We thus have
to revert to a more abstract way of mapping payouts to miners. In particular, we query mining
pools for the wallet addresses we have found and use the balance maintained by the pool for each
miner. This enables us to determine a lower bound of the profit made, despite the anonymity
guarantees of the CryptNote protocol.
With this procedure, we can track down 15,000USD worth of cryptocurrencies, as of the day

of writing, across different wallet addresses. In line with the breakdown in Table 9, Monero
dominates the measure with 99.4% of the value.

4.2 Greediness vs. Stealthiness
The revenue of a cryptojacking campaign may vary a lot, depending on how aggressive the miner
occupies the visitor’s CPU cores. Using large amounts of processing power earns the most money,
but simultaneously may raise suspicion due to an unresponsive computer and audible fan noise.
An attacker thus has to strike a balance between profit and stealthiness in practice.

Many popular implementations of web-based miners allow for the configuration of a throttling
value. While CoinHive’s default value is 0, their example recommends a value of 0.3, which means
the miner only uses 70% of the available computing power by constantly monitoring the current
and maximum possible hash rate and idling or mining accordingly. The data we have gathered in
Phase 2 for the validation of miners allows us to approximate the CPU load and thus also the
throttling value chosen by the website operator.

0% 20% 40% 60% 80% 100% 120%
CPU consumption

0.000

0.005

0.010

0.015

0.020

0.025

De
ns

ity

Figure 9: CPU consumption of cryptojacking web pages.

The results of our analysis are shown in Figure 9. The most popular setting is in the range
50–70%. Interestingly, about 5% of the websites attempt to even use up more CPU cores than
available on the system. This suggests that some attackers are especially greedy in their attempts



4.3 Code Diversity 24

to max out the available processing power by starting more mining threads than the CPU can
handle.

4.3 Code Diversity
As the last step, we analyze the diversity of the JavaScript and WebAssembly code in the identified
miners. For JavaScript, we can identify the script responsible for mining by inspecting the CPU
profiling. For the WebAssembly code, on the other hand, we have to first concatenate all parsed
functions into a single file using their SHA1 hashes for ordering, as we separately obtain these
functions from the debugger. As a result of this preprocessing, we obtain one sample of JavaScript
and one merged sample of WebAssembly code for each of the 1,939 websites containing miners.
While this representation simplifies our experimental setup, it requires a fuzzy analysis, as minor
perturbations in the merged files obstruct the application of exact matching.
We thus employ techniques from information retrieval that can cope with noisy data. In

particular, we conduct an n-gram analysis, where the code samples are first partitioned into tokens
using whitespaces and then mapped to a vector space by counting the occurrences of n-grams
(sequences of n tokens) [see 32]. This vectorial representation enables us to compute the cosine
similarity between all samples and generate the similarity matrices shown in Figure 10. The
columns and rows of the matrices are arranged using hierarchical clustering, such that larger
groups of similar code samples become visible.

0 500 1000 1500
Samples

0

500

1000

1500

Sa
m

pl
es

Coinhive

Advisorstat

0.0

0.2

0.4

0.6

0.8

1.0

(a) Similarity of JavaScript code

0 500 1000 1500
Samples

0

500

1000

1500

Sa
m

pl
es

0.0

0.2

0.4

0.6

0.8

1.0

(b) Similarity of WebAssembly code

Figure 10: Similarity and cluster analysis of JavaScript and WebAssembly code found in web-based miners.

For JavaScript, we identify 23 clusters of similar code. These clusters correspond to diverse
implementations, including the CoinHive library (largest cluster) as well as modified and obfuscated
code from different cryptojacking campaigns. We discuss some of these clusters in Section 5 as
case studies. By contrast, the WebAssembly code present in the 1,939 websites shows almost not
diversity and is highly similar to the original CoinHive implementation. We credit this finding



5 Case Studies 25

to minor modifications of the original code that allow for supporting alternative currencies or
operating over less expensive mining pools.

In summary, we conclude that the current landscape of cryptojacking is dominated by variants
of CoinHive. Although we spot different JavaScript code wrapping the miners, the low-level
code is in almost all cases derived from a single implementation. Apparently, the cryptographic
primitives underlying the CryptoNote protocol and in particular its proof-work-functions have
only been once translated to a web implementation and hence all active miners in our study rest
on the same foundation.

5 Case Studies
Finally, we briefly discuss the two largest families of miners that we have identified in the previous
section: 1) CoinHive, the implementation that has raised the most attention in public media,
and 2) Advisorstat, a lesser-known variant that employs a number of techniques to obscure its
operation.

5.1 Case 1: CoinHive
The CoinHive library first appeared in September 2017 on the German image board “pr0gram”,
where it was tested as a payment and incentive mechanism [23]. The implementation supports
different application scenarios, which range from replacing web advertisments to rate-limiting
traffic and monetizing services, such as link shorteners and file hosters. Consequently, CoinHive
shares similarities with the framework developed by Karame et al. [20] for computation-based
micropayments. It however differs from it by using cryptocurrencies as target and thus directly
monetizing the computations.
Under the hood, CoinHive offers a flexible JavaScript API, with options for throttling, not

mining on mobile devices and opting-out. The latter however is seldom presented to the user.
For their services, CoinHive currently charges a 30% fee. In our dataset, we found 836 sites that
directly include the mining code from coinhive.com/lib/coinhive.min.js. However, we observed
940 sites that communicate with ws*.coinhive.com/proxy, the WebSocket backend of CoinHive,
without previously requesting the mining code from CoinHive’s servers. This shows that some
sites prefer to host the script on their own servers or retrieve it from other sources, while still
using CoinHive’s infrastructure for the actual mining. A likely reason for this behavior is an
attempt to hide the presence of the mining activity, for instance, to circumvent blacklist-based
countermeasures that check for the original CoinHive-script URL.

5.2 Case 2: Advisorstat
The second biggest cluster is active on 315 different sites, all of which use a mining script hosted at
advisorstat.space/js/advisor.js. A direct visit to advisorstat.space results in a 403 Forbidden

message from Nginx. Apparently, the mining script and its Wasm counterpart are the only content
hosted on the domain. This raises the question why many, seemingly unrelated sites make use of



6 Discussion and Limitations 26

the same unknown and unadvertised mining service. Further investigation of the affected sites
reveals the common link: All sites in this cluster are hosted by the same provider for free website
creation called uCoz. The script is delivered via a banner at the top of each site, which advertises
uCoz’s services.

During further examination of the affected sites, we have quickly noticed that the miner only is
active on the first visit of each affected site. The reason for this is a cookie called uclickadushowed,
which is created with an expiration date of 12 hours upon visiting any site with the aforementioned
banner. Interestingly, the presence of this cookie is checked on the server-side and the code
responsible for the miner is not included in the response, if the cookie exists. Following the
trail of the banner, we observe that first obfuscated JavaScript code is loaded from moradu.com,
which subsequently loads further code from netrevgo.com. Both these domains are registered
through privacyprotect.org and hosted on Amazon’s AWS. Finally, the mining code is retrieved
from advisorstat.space, a domain registered in Panama through whoisguard.com, another privacy
protection service. The mining script itself contacts the advisorstat server for reporting the hashes
using obfuscated packets sent over a WebSocket connection.

6 Discussion and Limitations
Our study provides the first comprehensive view on cryptojacking in the wild. Nonetheless, several
of our results are estimates and approximations, as exact measurements are hardly possible in a
dynamic system such as the Internet. In the following, we discuss the implications and limitations
of our findings in more detail and reason about their practical relevance.

6.1 Revenue
Determining the overall revenue of cryptojacking is inherently difficult, due to the lack of exact
measurements for the number of website visits or their duration. The popularity of a website, its
content and, furthermore, its potential to engage visitors to stay are subject to constant change.
In this study, we hence operate on estimates of the profit only and the ascertained values are only
as accurate as the visiting statistics we use.
We show that web-based mining can generate significant revenue for large websites. The

video-streaming platform Pornhub, for instance, may earn as much as 50,000USD a day using the
CoinHive service. This can be even increased if a mining service with a less severe payout ratio is
used. However, considering traditional online advertisements with a typical payout of 1USD per
thousand impressions (CPM), Pornhub, for instance, would already make 81,000USD per day.
On this level, cryptojacking thus does not seem to be a worthwhile replacement. For websites
with fewer visits from countries for which advertisement networks do not pay as well the ratio
may shift. Our study, however, shows that the average revenue only is moderate.



6.2 Countermeasures 27

6.2 Countermeasures
As demonstrated, cryptojacking is a prevalent malice in today’s web landscape. Thus, it is of
interest to investigate suitable countermeasures to protect web users from the parasitic usage of
their resources. The evaluation in Section 3.5 has shown that existing blacklist-based approaches
are ineffective, as they are trivial to evade and the actual lists outdate fast.

Instead of static blacklists, in this paper, we leverage a set of heuristic indicators for candidate
selection and a dedicated performance measurement step for precise miner identification (see Sec-
tion 3). As shown, this approach is well suited to reliably detect the current generation of mining
scripts. However, this has to be partially attributed to the fact, that today’s mining operators
apparently do not anticipate our detection approach.

Unfortunately, none of our utilized heuristic indicators constitute a necessary technical precon-
dition to implement mining JavaScript code: The communication via WebSockets can be replaced
with other JavaScript networking capabilities, such as XMLHttpRequest. The parallelization of
script execution through WebWorkers can be imitated through spawning multiple iframes—even
though this technique leads to the loss of active mining in non-focused browser tabs. And while
there is no real alternative to WebAssembly, less performant miner scripts can be implemented
using subsets of JavaScript, such as asm.js.

As a result, the only reliable indicator in the presence of an adversary that actively tries to avoid
detection is the measurement of prolonged and excessive CPU usage. Simple CPU thresholds
carry the danger of false positives in case of websites with occasional CPU heavy tasks or potential
false negatives in the form of mining scripts, which deliberately try to remain below a certain
CPU usage limit. Instead, we advocate the exploration of CPU allotments, in which each browser
tab receives a certain amount of CPU minutes. As soon as a tab runs out of its quota, the
browser could take actions, such as throttling the tab’s scripts or warning the user. We leave an
implementation and evaluation of such a mining-aware browser to future work.

6.3 Threats to Validity
Finally, we discuss threats to the validity of our empirical study and how they have been addressed
in our implementation and experimental setup. Moreover, we pinpoint directions for extensions
that can limit certain effects in future studies.

False positives.
The core of this paper consists of a detection approach that aims to find cryptojacking scripts

at run-time. This task comes with an inherent precision problem, as we try to determine the
semantics of executed code from dynamic execution artifacts based on a set of heuristics and
characteristics. Thus, even though the used set of indicators and heuristics are carefully chosen,
based on thorough manual analysis of validated cryptojacking code, there are no formal guarantees
that the approach really identifies mining scripts or does not accidentally misclassify some examined
sites, for instance, due to computation-heavy, legitimate JavaScript code.

Creating a good testbed for false positives is unfortunately impossible: Simply hosting a set of
web applications from trustworthy sources ourselfes would not achieve much, as widely available



6.3 Threats to Validity 28

software is likely to be well tested and free of obvious performance issues. Rather, we would expect
a high CPU load on a custom, hand-crafted website built by an inexperienced developer, who
unintentionally uses very ineffectient code to interact with the DOM or introduces some kind of
endless loop. As there does not exist a set of real-world, buggy-but-benign websites, we can not
test our system for false positives on a ground truth.
To examine the potential problem of misclassification, we instead use a similarity analysis on

the resulting data set of JavaScript and Wasm code (see Section 4.3). While in the collected set
of JavaScript a certain degree of variance exists, the vast majority of Wasm code exhibits an
astonishingly high degree of similarity, with less than 4% of outliers. To further investigate the
JavaScript code, we took a random sample from each of the 23 clusters to represent that cluster.
By combining manual static and dynamic analysis and searching for mining-specific strings and
functions, we were able to confirm that each sample is indeed a cryptominer and thus the whole
cluster is likely to contain only scripts used for cryptojacking.

False negatives.
The study only provides a lower bound on the overall cryptojacking landscape, as we are aware

of a set of scenarios, which are currently not covered by our methodology: First, we only visit the
homepages of the Alexa Top 1 million without deeper crawling of the sites. Thus, if a website
uses miners exclusively in some of its subpages, our crawler would not have encountered them.
Second, the detection process might miss mining sites that deliberately delay the inclusion of the
mining scripts in the web document for a time that exceeds our analysis time window. Similarly,
sites that use a non-deterministic condition to start the mining process or require user interaction
for the mining to start will not be found. Finally, custom, non-active mining scripts for which no
static indicators can be generated during phase 3 are missed by our approach.

To address this issues, we did a thorough cross-check with the current state-of-the-art in miner
detection, namely the most used browser extensions. Our approach achieves high coverage of
the manually curated blacklists of the extensions (see Section 3.5), which conclusively shows our
technique’s ability to identify mining scripts. Furthermore, increasing the reach of the crawling
process and extended examination times would in general address the majority of the potential
problems. Also, periodic repetition of the experiment will lead to the eventual detection of
unreliable or currently malfunctioning miners. We leave these measures to future work.
Regarding the use of evasions to prevent detection, it should be noted that techniques like

delaying the start of the miner also come with a significant drawback: Unlike traditional malware
infections, where the malware likely can achieve persistance on the system, web-based mining
stops as soon as the user closes the browser tab. Thus, an attacker only has limited time to run
the mining code and any delays will negativly affect his profits, making it less likely to encounter
such techniques.

Data analysis.
The results of the website distribution measurements (Section 3.6) and revenue estimations

(Secion 4.1) directly rely on external data sources, such as GeoIP, SimilarWeb, or Symantec’s
WebPulse Site Review. Thus, the quality of the provided analysis depends on the quality of the



7 Related Work 29

external data. Especially, the revenue calculations rely on estimated figures that are compiled
using proprietary methodologies. Thus, the impact of potential problems in the underlying data
should be considered when interpreting the presented results.

7 Related Work
Web-based cryptojacking is a novel attack strategy that has received little attention in the
research community so far. While news media and web blogs have started to cover different
incidents involving cryptojacking in the last months [e.g., 1, 10, 15, 23], little systematic investi-
gation of the prevalence and efficacy of this threat has been conducted to date. The study by
Eskandari et al. [12] was the first to provide a peek at the problem. However, the study is limited
to vanilla CoinHive miners, and the underlying methodology is unsuited to detect alternative or
obfuscated mining scripts. In contrast, our work aims to provide a comprehensive survey on the
landscape of cryptojacking in the web using a technology-agnostic detection approach.
In independent, concurrent work, Konoth et al. [22] search the web for instances of drive-by

mining. They first identify miners with a list of static keywords in the JavaScript code and
additionally utilize dynamically collected data in the form of WebSocket communication and the
number of created WebWorkers. In March 2018 they crawled the Alexa Top 1 Million front-pages
plus three sub-pages for each and identified 1,735 websites with a miner. Building on these results,
they propose a detection based on the identification of cryptographic primitives inside the Wasm
code. This alternative detection dubbed MineSweeper found 744 miners in the Top 1 Million
(without sub-pages) in their crawl in April. Similarly, we intinally also use a combination of static
and dynamic indicators to identify websites that might include a miner, but in contrast then use
V8’s profiler to measure the CPU usage on a per-function level over an extended timeframe to
verify the persence of miner. With this approach, we find 2,506 websites conducing cryptojacking
in the Alexa Top 1 million without visiting any sub-pages.

Also related is the work of Karame et al. [20] that investigate benign applications of computation-
based micropayments in the web. While their work lays out the positive potential of microcompu-
tations, such as mining, our study focuses on the current abuse of this concept and its occurrence
in the web. Unauthorized mining of cryptocurrencies, however, is not limited to web scenarios.
For example, Huang et al. [19] present a study on malware families and botnets that use Bitcoin
mining on compromised computers. Similarly, Ali et al. [2] investigate botnets that mine alter-
native currencies, such as Dogecoin, due to the rising difficulty of profitably generating Bitcoins.
To detect illegitimate mining activities, either through compromised machines or malicious users,
Tahir et al. [35] propose MineGuard, a hypervisor-based tool that identifies mining operations
through CPU and GPU monitoring. Our study extends this body of work by providing an in-depth
view of mining activity in the web.

From a more general point of view, cryptocurrency mining is a form of parasitic computing, a
type of attack first proposed by Barabási et al. [3]. As an example of this attack, the authors
present a sophisticated scheme that tricks network nodes into solving computational problems
by engaging them in standard communication. Moreover, Rodriguez and Posegga [30] present an



8 Conclusion 30

alternative method for abusing web technology that enables building a rogue storage network.
Unlike cryptojacking, these attack scenarios are mainly of theoretical nature, and the authors do
not provide evidence of any occurrence in the wild.
On a technical level, our methodology is related to approaches using high-interaction honey

browsers [e.g., 21, 26, 29, 39], which are mainly utilized to detect attacks on the browser’s host
system via the exploitation of memory corruption flaws, a threat also known as drive-by-downloads.
While our approach shares the same exploration mechanism—using a browser-like system to
actively visit potentially malicious sites—our detection approach diverges, as the symptoms of
browser-based mining stem from the exclusive usage of legitimate functionality, in contrast to
drive-by-download attacks that cause low-level control-flow changes in the attacked browser or
host system.

8 Conclusion
This study provides the first comprehensive view on the threat of web-based cryptojacking.
Although browser-based mining is a rather novel development, our empirical investigation reveals
an increasing number of websites that employ this technology and exploit computational resources
of their visitors. We show that approximately 1 out of 500 websites in the Alexa 1 million ranking
contains a miner that immediately starts mining when visiting the website. This implies that
falling victim to a cryptojacker is not a rare event, and a considerable amount of energy is drained
as part of this illegal activity every day.
Despite several mining websites with thousands of visitors, our estimate of the generated

revenue shows that web-based cryptojacking is not as profitable as it seems and many miners
attain only moderate payouts. Still, cryptocurrencies enjoy great popularity and provide a lucrative
playground for financial speculation. It is thus unlikely that mining activity will disappear on its
own unless cryptocurrencies significantly loose in value or novel regulations limit their trading. As
a consequence, there clearly is a need for effective detection and defense mechanisms.

Unfortunately, we show in our study that current detection mechanisms are insufficient to fend
off this threat, as they rely on simple blacklists that fail to cope with the complexity of JavaScript
and WebAssembly code. This complexity can only be tackled if defense mechanisms are tightly
integrated into the browser, such that the resources available to a website can be monitored and
regulated dynamically—irrespective of the execution environment and employed web standards.
Ultimately, such protection might help to generally mitigate the threat of parasitic computing
inherent to current web technology.

Acknowledgments
The authors would like to thank Martina Lindorfer and Herbert Bos for providing a draft of their
related paper. Furthermore, the authors gratefully acknowledge funding from the German Federal
Ministry of Education and Research (BMBF) under the project VAMOS (FKZ 16KIS0534) and
FIDI (FKZ 16KIS0786K) and funding from the state of Lower Saxony under the project Mobilise.



References 31

References
[1] AdGuard Research. Cryptocurrency mining affects over 500 million people. And they have

no idea it is happening. Website https://adguard.com/en/blog/crypto-mining-fever/,
Oct. 2017.

[2] S. T. Ali, D. Clarke, and P. McCorry. Bitcoin: Perils of an unregulated global p2p currency.
In Security Protocols XXIII, pages 283–293. Springer, 2015.

[3] A.-L. Barabási, V. W. Freeh, H. Jeong, and J. B. Brockman. Parasitic computing. Nature,
412:894–897, 2001.

[4] Bleeping Computer. Massive Coinhive Cryptojacking Campaign Touches Over 200,000
MikroTik Routers. Website https://www.bleepingcomputer.com/news/security/
massive-coinhive-cryptojacking-campaign-touches-over-200-000-mikrotik-
routers/, Aug. 2018.

[5] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. Sok: Research
perspectives and challenges for bitcoin and cryptocurrencies. In Proc. of IEEE Symposium
on Security and Privacy, pages 104–121, 2015.

[6] Bytecoin. Bytecoin (BCN) – Anonymous cryptocurrency based on CryptoNote. Website
https://bytecoin.org, May 2018.

[7] ChromeDevTools. Chrome DevTools Protocol Viewer. Website https://chromedevtools.
github.io/devtools-protocol/, May 2018.

[8] CoinMarketCap. CoinMarketCap – Market Capitalization of Cryptocurrencies. Website
https://coinmarketcap.com/currencies/, May 2018.

[9] Council of European Union. Council regulation (EU) no 679/2016. Website https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679, Apr. 2016.

[10] W. de Groot. Cryptojacking found on 2496 online stores. Website https://gwillem.gitlab.
io/2017/11/07/cryptojacking-found-on-2496-stores/, Nov. 2017.

[11] Electroneum Ltd. Electroneum – The mobile based cryptocurrency. Website https://
electroneum.com, 2018.

[12] S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark. A first look at browser-based
cryptojacking. In Proc. of IEEE Security and Privacy on the Blockchain Workshop, 2018.

[13] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas, and J. Walker.
The skein hash function family. Version 1.1, 2008.

[14] I. Fette and A. Melnikov. The websocket protocol. RFC 6455 (Proposed Standard), Dec.
2011. URL http://www.ietf.org/rfc/rfc6455.txt. Updated by RFC 7936.

https://adguard.com/en/blog/crypto-mining-fever/
https://www.bleepingcomputer.com/news/security/massive-coinhive-cryptojacking-campaign-touches-over-200-000-mikrotik-routers/
https://www.bleepingcomputer.com/news/security/massive-coinhive-cryptojacking-campaign-touches-over-200-000-mikrotik-routers/
https://www.bleepingcomputer.com/news/security/massive-coinhive-cryptojacking-campaign-touches-over-200-000-mikrotik-routers/
https://bytecoin.org
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://coinmarketcap.com/currencies/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
https://gwillem.gitlab.io/2017/11/07/cryptojacking-found-on-2496-stores/
https://gwillem.gitlab.io/2017/11/07/cryptojacking-found-on-2496-stores/
https://electroneum.com
https://electroneum.com
http://www.ietf.org/rfc/rfc6455.txt


References 32

[15] D. Goodin. Cryptojacking craze that drains your CPU now done by 2,500 sites. Ars
Technica, Website https://arstechnica.com/information-technology/2017/11/drive-
by-cryptomining-that-drains-cpus-picks-up-steam-with-aid-of-2500-sites/,
Nov. 2017.

[16] D. Goodin. Now even YouTube serves ads with CPU-draining cryptocurrency miners. Ars Tech-
nica, Website https://arstechnica.com/information-technology/2018/01/now-even-
youtube-serves-ads-with-cpu-draining-cryptocurrency-miners/, Jan. 2018.

[17] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner, A. Zakai,
and J. F. Bastien. Bringing the web up to speed with WebAssembly. In Proc. of ACM
SIGPLAN International Conference on Programming Languages Design and Implementation
(PLDI), pages 185–200, 2017.

[18] I. Hickson. Web workers. W3C Working Draft, Sept. 2015. URL https://www.w3.org/TR/
2015/WD-workers-20150924/.

[19] D. Y. Huang, H. Dharmdasani, S. Meiklejohn, V. Dave, C. Grier, D. McCoy, S. Savage,
N. Weaver, A. C. Snoeren, and K. Levchenko. Botcoin: Monetizing stolen cycles. In Proc. of
Network and Distributed System Security Symposium (NDSS), 2014.

[20] G. O. Karame, A. Francillon, and S. Čapkun. Pay as you browse: Microcomputations
as micropayments in web-based services. In Proc. of the International World Wide Web
Conference (WWW), pages 307–316, 2011.

[21] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle: De-cloaking internet malware. In
Proc. of IEEE Symposium on Security and Privacy, pages 443–457, 2012.

[22] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel, H. Bos, and G. Vigna. An
in-depth look into drive-by mining and its defense. In Proc. of ACM Conference on Computer
and Communications Security (CCS), 2018. To appear October 2018.

[23] B. Krebs. Who and What Is Coinhive? Website https://krebsonsecurity.com/2018/03/
who-and-what-is-coinhive, Mar. 2018.

[24] A. Kumar, C. Fischer, S. Tople, and P. Saxena. A traceability analysis of monero’s blockchain.
In Proc. of European Symposium on Research in Computer Security (ESORICS), pages
153–173, 2017.

[25] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava, K. Hogan, J. Hennessey,
A. Miller, A. Narayanan, and N. Christin. An empirical analysis of traceability in the monero
blockchain. Proc. of Privacy Enhancing Technologies Symposium (PETS), 2018.

[26] A. Moshchuk, T. Bragin, D. Deville, S. D. Gribble, and H. M. Levy. Spyproxy: Execution-
based detection of malicious web content. In Proc. of USENIX Security Symposium, 2007.

[27] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, May 2009. URL http:
//www.bitcoin.org/bitcoin.pdf.

https://arstechnica.com/information-technology/2017/11/drive-by-cryptomining-that-drains-cpus-picks-up-steam-with-aid-of-2500-sites/
https://arstechnica.com/information-technology/2017/11/drive-by-cryptomining-that-drains-cpus-picks-up-steam-with-aid-of-2500-sites/
https://arstechnica.com/information-technology/2018/01/now-even-youtube-serves-ads-with-cpu-draining-cryptocurrency-miners/
https://arstechnica.com/information-technology/2018/01/now-even-youtube-serves-ads-with-cpu-draining-cryptocurrency-miners/
https://www.w3.org/TR/2015/WD-workers-20150924/
https://www.w3.org/TR/2015/WD-workers-20150924/
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive
https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf


References 33

[28] Pornhub Insight. 2017 Year in Review. Website https://www.pornhub.com/insights/
2017-year-in-review, May 2018.

[29] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All your iframes point to us. In
Proc. of USENIX Security Symposium, pages 1–15, 2008.

[30] J. D. P. Rodriguez and J. Posegga. CSP & Co. Can Save Us from a Rogue Cross-Origin
Storage Browser Network! But for How Long? In Proc. of ACM Conference on Data and
Application Security and Privacy (CODASPY), 2018.

[31] A. Rossberg. Webassembly core specification. W3C First Public Working Draft, Feb. 2018.
URL https://www.w3.org/TR/2018/WD-wasm-core-1-20180215.

[32] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,
1986.

[33] Scott Helme. Protect your site from Cryptojacking with CSP + SRI. Website https:
//scotthelme.co.uk/protect-site-from-cryptojacking-csp-sri/, Feb. 2018.

[34] “Seigen”, M. Jameson, T. Nieminen, “Neocortex”, and A. M. Juarez. Cryptonight hash
function. CryptoNote Standard 008, Mar. 2008. URL https://cryptonote.org/cns/
cns008.txt.

[35] R. Tahir, M. Huzaifa, A. Das, M. Ahmad, C. Gunter, F. Zaffar, M. Caesar, and N. Borisov.
Mining on someone else’s dime: Mitigating covert mining operations in clouds and enterprises.
In Proc. of International Symposium on Research in Attacks, Intrusions and Defenses (RAID),
pages 287–310, 2017.

[36] The Monero Project. Monero: Home. Website https://getmonero.org/, May 2018.

[37] UNIX International. Dwarf debugging information format. Revision 2.0.0, 1993.

[38] N. van Saberhagen. Cryptonote v2.0. Technical report, CryptoNote, Oct. 2013.

[39] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. King. Automated
web patrol with strider honeymonkeys: Finding web sites that exploit browser vulnerabilities.
In Proc. of Network and Distributed System Security Symposium (NDSS), 2006.

[40] A. Werner, “Montag”, “Ardolabar”, “Tereno”, and A. M. Juarez. Cryptonote blockchain.
CryptoNote Standard 003, Sept. 2012. URL https://cryptonote.org/cns/cns003.txt.

[41] Wired. Your Browser Could Be Mining Cryptocurrency for a Stranger. Website https:
//www.wired.com/story/cryptojacking-cryptocurrency-mining-browser/, Sept. 2017.

https://www.pornhub.com/insights/2017-year-in-review
https://www.pornhub.com/insights/2017-year-in-review
https://www.w3.org/TR/2018/WD-wasm-core-1-20180215
https://scotthelme.co.uk/protect-site-from-cryptojacking-csp-sri/
https://scotthelme.co.uk/protect-site-from-cryptojacking-csp-sri/
https://cryptonote.org/cns/cns008.txt
https://cryptonote.org/cns/cns008.txt
https://getmonero.org/
https://cryptonote.org/cns/cns003.txt
https://www.wired.com/story/cryptojacking-cryptocurrency-mining-browser/
https://www.wired.com/story/cryptojacking-cryptocurrency-mining-browser/


Technische Universität Braunschweig
Institute for Application Security
Mühlenpfordtstraße 23
38106 Braunschweig
Germany


	1 Introduction
	2 Web-based Mining
	2.1 Memory-bound Cryptocurrencies
	2.2 Novel Web Standards
	2.3 Anatomy of a Web-based Miner
	2.4 Cryptojacking

	3 Identification of Web-based Miners
	3.1 General Approach
	3.2 Implementation
	3.2.1 Instrumented browser
	3.2.2 Fake number of cores
	3.2.3 CPU Profiling

	3.3 Experimental Setup
	3.4 Prevalence
	3.5 Effectiveness of Countermeasures
	3.6 Distribution

	4 Analysis of cryptojacking
	4.1 Revenue Estimation
	4.1.1 Upper-bound estimate
	4.1.2 Expected per-site revenue
	4.1.3 Average revenue
	4.1.4 Used cryptocurrencies
	4.1.5 Quantitative estimate

	4.2 Greediness vs. Stealthiness
	4.3 Code Diversity

	5 Case Studies
	5.1 Case 1: CoinHive
	5.2 Case 2: Advisorstat

	6 Discussion and Limitations
	6.1 Revenue
	6.2 Countermeasures
	6.3 Threats to Validity

	7 Related Work
	8 Conclusion

